Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Phytomedicine ; 114: 154796, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2306476

ABSTRACT

BACKGROUND: The 3C-like proteases (3CLpros) are cysteine-rich homodimeric proteins and can be covalently modified by numerous natural and synthetic compounds, which in turn, block the proteolytic activity or the formation of enzymatically active dimeric forms. Although herbal medicines have been widely used to treat COVID-19, identification of the key herbal constituents that can covalently modify the 3CLpros in ß-coronaviruses (CoVs) remains a big challenge. AIMS: To construct a comprehensive approach for efficient discovering the covalent SARS-CoV-2 3CLpro inhibitors from herbal medicines. To decipher the key anti-SARS-CoV-2 3CLpro constituents in Ginkgo biloba extract 50 (GBE50) and to study their anti-SARS-CoV-2 3CLpro mechanisms. METHODS: SARS-CoV-2 3CLpro inhibition assay including time-dependent inhibition assays and inactivation kinetic analyses were conducted using a fluorescence-based biochemical assay. The constituents in GBE50 were analyzed by UHPLC-Q-Exactive Orbitrap HRMS. The peptides modified by herbal constituents were characterized by using nanoLC-MS/MS. RESULTS: Following testing the anti-SARS-CoV-2 3CLpro effects of 104 herbal medicines, it was found that Ginkgo biloba extract 50 (GBE50) potently inhibited SARS-CoV-2 3CLpro in dose- and time-dependent manners. A total of 38 constituents were identified from GBE50 by UHPLC-Q-Exactive Orbitrap HRMS, while 26 peptides modified by 18 constituents were identified by chemoproteomic profiling. The anti-SARS-CoV-2 3CLpro effects of 18 identified covalent inhibitors were then validated by performing time-dependent inhibition assays. The results clearly demonstrated that most tested constituents showed time-dependent inhibition on SARS-CoV-2 3CLpro, while gallocatechin and sciadopitysin displayed the most potent anti-SARS-CoV-2 3CLpro effects. CONCLUSION: Collectively, GBE50 and some constituents in this herbal product could strongly inhibit SARS-CoV-2 3CLpro in dose- and time-dependent manner. Gallocatechin and sciadopitysin were identified as potent SARS-CoV-2 3CLpro inhibitors, which offers promising lead compounds for the development of novel anti-SARS-CoV-2 drugs.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antiviral Agents/pharmacology , Peptides , Plant Extracts , Tandem Mass Spectrometry
2.
Phytomedicine : international journal of phytotherapy and phytopharmacology ; 2023.
Article in English | EuropePMC | ID: covidwho-2288682

ABSTRACT

Background : The 3C-like proteases (3CLpros) are cysteine-rich homodimeric proteins and can be covalently modified by numerous natural and synthetic compounds, which in turn, block the proteolytic activity or the formation of enzymatically active dimeric forms. Although herbal medicines have been widely used to treat COVID-19, identification of the key herbal constituents that can covalently modify the 3CLpros in β-coronaviruses (CoVs) remains a big challenge. Aims : To construct a comprehensive approach for efficient discovering the covalent SARS-CoV-2 3CLpro inhibitors from herbal medicines. To decipher the key anti-SARS-CoV-2 3CLpro constituents in Ginkgo biloba extract 50 (GBE50) and to study their anti-SARS-CoV-2 3CLpro mechanisms. Methods : SARS-CoV-2 3CLpro inhibition assay including time-dependent inhibition assays and inactivation kinetic analyses were conducted using a fluorescence-based biochemical assay. The constituents in GBE50 were analyzed by UHPLC-Q-Exactive Orbitrap HRMS. The peptides modified by herbal constituents were characterized by using nanoLC-MS/MS. Results : Following testing the anti-SARS-CoV-2 3CLpro effects of 104 herbal medicines, it was found that Ginkgo biloba extract 50 (GBE50) potently inhibited SARS-CoV-2 3CLpro in dose- and time-dependent manners. A total of 38 constituents were identified from GBE50 by UHPLC-Q-Exactive Orbitrap HRMS, while 26 peptides modified by 18 constituents were identified by chemoproteomic profiling. The anti-SARS-CoV-2 3CLpro effects of 18 identified covalent inhibitors were then validated by performing time-dependent inhibition assays. The results clearly demonstrated that most tested constituents showed time-dependent inhibition on SARS-CoV-2 3CLpro, while gallocatechin and sciadopitysin displayed the most potent anti-SARS-CoV-2 3CLpro effects. Conclusion : Collectively, GBE50 and some constituents in this herbal product could strongly inhibit SARS-CoV-2 3CLpro in dose- and time-dependent manner. Gallocatechin and sciadopitysin were identified as potent SARS-CoV-2 3CLpro inhibitors, which offers promising lead compounds for the development of novel anti-SARS-CoV-2 drugs. Graphical abstract Image, graphical abstract

3.
MedComm (2020) ; 3(3): e151, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2013677

ABSTRACT

The main proteases (Mpro), also termed 3-chymotrypsin-like proteases (3CLpro), are a class of highly conserved cysteine hydrolases in ß-coronaviruses. Increasing evidence has demonstrated that 3CLpros play an indispensable role in viral replication and have been recognized as key targets for preventing and treating coronavirus-caused infectious diseases, including COVID-19. This review is focused on the structural features and biological function of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease Mpro (also known as 3CLpro), as well as recent advances in discovering and developing SARS-CoV-2 3CLpro inhibitors. To better understand the characteristics of SARS-CoV-2 3CLpro inhibitors, the inhibition activities, inhibitory mechanisms, and key structural features of various 3CLpro inhibitors (including marketed drugs, peptidomimetic, and non-peptidomimetic synthetic compounds, as well as natural compounds and their derivatives) are summarized comprehensively. Meanwhile, the challenges in this field are highlighted, while future directions for designing and developing efficacious 3CLpro inhibitors as novel anti-coronavirus therapies are also proposed. Collectively, all information and knowledge presented here are very helpful for understanding the structural features and inhibitory mechanisms of SARS-CoV-2 3CLpro inhibitors, which offers new insights or inspiration to medicinal chemists for designing and developing more efficacious 3CLpro inhibitors as novel anti-coronavirus agents.

4.
MedComm ; 3(3), 2022.
Article in English | EuropePMC | ID: covidwho-1940024

ABSTRACT

The main proteases (Mpro), also termed 3‐chymotrypsin‐like proteases (3CLpro), are a class of highly conserved cysteine hydrolases in β‐coronaviruses. Increasing evidence has demonstrated that 3CLpros play an indispensable role in viral replication and have been recognized as key targets for preventing and treating coronavirus‐caused infectious diseases, including COVID‐19. This review is focused on the structural features and biological function of the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) main protease Mpro (also known as 3CLpro), as well as recent advances in discovering and developing SARS‐CoV‐2 3CLpro inhibitors. To better understand the characteristics of SARS‐CoV‐2 3CLpro inhibitors, the inhibition activities, inhibitory mechanisms, and key structural features of various 3CLpro inhibitors (including marketed drugs, peptidomimetic, and non‐peptidomimetic synthetic compounds, as well as natural compounds and their derivatives) are summarized comprehensively. Meanwhile, the challenges in this field are highlighted, while future directions for designing and developing efficacious 3CLpro inhibitors as novel anti‐coronavirus therapies are also proposed. Collectively, all information and knowledge presented here are very helpful for understanding the structural features and inhibitory mechanisms of SARS‐CoV‐2 3CLpro inhibitors, which offers new insights or inspiration to medicinal chemists for designing and developing more efficacious 3CLpro inhibitors as novel anti‐coronavirus agents. A comprehensive summary of recent advances in SARS‐CoV‐2 3CLpro inhibitors (including marketed drugs, peptidomimetic, and non‐peptidomimetic synthetic compounds, as well as natural compounds and their derivatives), including the inhibitory activities, inhibitory mechanisms, and key structural features, provides new insights for designing and developing more efficacious 3CLpro inhibitors as broad‐spectrum anti‐coronavirus agents.

5.
Chem Biol Interact ; 351: 109744, 2022 Jan 05.
Article in English | MEDLINE | ID: covidwho-1509623

ABSTRACT

Remdesivir, an intravenous nucleotide prodrug, has been approved for treating COVID-19 in hospitalized adults and pediatric patients. Upon administration, remdesivir can be readily hydrolyzed to form its active form GS-441524, while the cleavage of the carboxylic ester into GS-704277 is the first step for remdesivir activation. This study aims to assign the key enzymes responsible for remdesivir hydrolysis in humans, as well as to investigate the kinetics of remdesivir hydrolysis in various enzyme sources. The results showed that remdesivir could be hydrolyzed to form GS-704277 in human plasma and the microsomes from human liver (HLMs), lung (HLuMs) and kidney (HKMs), while the hydrolytic rate of remdesivir in HLMs was the fastest. Chemical inhibition and reaction phenotyping assays suggested that human carboxylesterase 1 (hCES1A) played a predominant role in remdesivir hydrolysis, while cathepsin A (CTSA), acetylcholinesterase (AchE) and butyrylcholinesterase (BchE) contributed to a lesser extent. Enzymatic kinetic analyses demonstrated that remdesivir hydrolysis in hCES1A (SHUTCM) and HLMs showed similar kinetic plots and much closed Km values to each other. Meanwhile, GS-704277 formation rates were strongly correlated with the CES1A activities in HLM samples from different individual donors. Further investigation revealed that simvastatin (a therapeutic agent for adjuvant treating COVID-19) strongly inhibited remdesivir hydrolysis in both recombinant hCES1A and HLMs. Collectively, our findings reveal that hCES1A plays a predominant role in remdesivir hydrolysis in humans, which are very helpful for predicting inter-individual variability in response to remdesivir and for guiding the rational use of this anti-COVID-19 agent in clinical settings.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Carboxylesterase/metabolism , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/metabolism , Alanine/chemistry , Alanine/metabolism , Butyrylcholinesterase/chemistry , Butyrylcholinesterase/metabolism , Carboxylesterase/chemistry , Cathepsin A/chemistry , Cathepsin A/metabolism , Humans , Hydrolysis/drug effects , Kinetics , Liver/metabolism , Microsomes, Liver/metabolism , Simvastatin/pharmacology
6.
Int J Biol Macromol ; 187: 976-987, 2021 Sep 30.
Article in English | MEDLINE | ID: covidwho-1474606

ABSTRACT

Coronavirus 3C-like protease (3CLpro) is a crucial target for treating coronavirus diseases including COVID-19. Our preliminary screening showed that Ampelopsis grossedentata extract (AGE) displayed potent SARS-CoV-2-3CLpro inhibitory activity, but the key constituents with SARS-CoV-2-3CLpro inhibitory effect and their mechanisms were unrevealed. Herein, a practical strategy via integrating bioactivity-guided fractionation and purification, mass spectrometry-based peptide profiling and time-dependent biochemical assay, was applied to identify the crucial constituents in AGE and to uncover their inhibitory mechanisms. The results demonstrated that the flavonoid-rich fractions (10-17.5 min) displayed strong SARS-CoV-2-3CLpro inhibitory activities, while the constituents in these fractions were isolated and their SARS-CoV-2-3CLpro inhibitory activities were investigated. Among all isolated flavonoids, dihydromyricetin, isodihydromyricetin and myricetin strongly inhibited SARS-CoV-2 3CLpro in a time-dependent manner. Further investigations demonstrated that myricetin could covalently bind on SARS-CoV-2 3CLpro at Cys300 and Cys44, while dihydromyricetin and isodihydromyricetin covalently bound at Cys300. Covalent docking coupling with molecular dynamics simulations showed the detailed interactions between the orthoquinone form of myricetin and two covalent binding sites (surrounding Cys300 and Cys44) of SARS-CoV-2 3CLpro. Collectively, the flavonoids in AGE strongly and time-dependently inhibit SARS-CoV-2 3CLpro, while the newly identified SARS-CoV-2 3CLpro inhibitors in AGE offer promising lead compounds for developing novel antiviral agents.


Subject(s)
3C Viral Proteases/chemistry , 3C Viral Proteases/metabolism , Ampelopsis/chemistry , Antiviral Agents/pharmacology , Flavonoids/pharmacology , SARS-CoV-2/enzymology , Antiviral Agents/chemistry , Binding Sites/drug effects , Cysteine/metabolism , Flavonoids/chemistry , Flavonols/chemistry , Flavonols/pharmacology , Mass Spectrometry , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Plant Extracts/chemistry , Plant Extracts/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protein Binding/drug effects , Protein Conformation/drug effects , SARS-CoV-2/drug effects
7.
Acta Pharmacol Sin ; 43(4): 1072-1081, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1285959

ABSTRACT

Jingyin granules, a marketed antiviral herbal medicine, have been recommended for treating H1N1 influenza A virus infection and Coronavirus disease 2019 (COVID-19) in China. To fight viral diseases in a more efficient way, Jingyin granules are frequently co-administered in clinical settings with a variety of therapeutic agents, including antiviral drugs, anti-inflammatory drugs, and other Western medicines. However, it is unclear whether Jingyin granules modulate the pharmacokinetics of Western drugs or trigger clinically significant herb-drug interactions. This study aims to assess the inhibitory potency of the herbal extract of Jingyin granules (HEJG) against human drug-metabolizing enzymes and to clarify whether HEJG can modulate the pharmacokinetic profiles of Western drug(s) in vivo. The results clearly demonstrated that HEJG dose-dependently inhibited human CES1A, CES2A, CYPs1A, 2A6, 2C8, 2C9, 2D6, and 2E1; this herbal medicine also time- and NADPH-dependently inhibited human CYP2C19 and CYP3A. In vivo tests showed that HEJG significantly increased the plasma exposure of lopinavir (a CYP3A-substrate drug) by 2.43-fold and strongly prolonged its half-life by 1.91-fold when HEJG (3 g/kg) was co-administered with lopinavir to rats. Further investigation revealed licochalcone A, licochalcone B, licochalcone C and echinatin in Radix Glycyrrhizae, as well as quercetin and kaempferol in Folium Llicis Purpureae, to be time-dependent CYP3A inhibitors. Collectively, our findings reveal that HEJG modulates the pharmacokinetics of CYP substrate-drug(s) by inactivating CYP3A, providing key information for both clinicians and patients to use herb-drug combinations for antiviral therapy in a scientific and reasonable way.


Subject(s)
COVID-19 Drug Treatment , Influenza A Virus, H1N1 Subtype , Animals , Antiviral Agents/pharmacology , Cytochrome P-450 CYP3A Inhibitors , Herb-Drug Interactions , Humans , Microsomes, Liver , Rats
8.
Fitoterapia ; 152: 104909, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1203052

ABSTRACT

3-Chymotrypsin-like protease (3CLpro) is a virally encoded main proteinase that is pivotal for the viral replication across a broad spectrum of coronaviruses. This study aims to discover the naturally occurring SARS-CoV-2 3CLpro inhibitors from herbal constituents, as well as to investigate the inhibitory mechanism of the newly identified efficacious SARS-CoV-2 3CLpro inhibitors. Following screening of the inhibitory potentials of eighty herbal products against SARS-CoV-2 3CLpro, Ginkgo biloba leaves extract (GBLE) was found with the most potent SARS-CoV-2 3CLpro inhibition activity (IC50 = 6.68 µg/mL). Inhibition assays demonstrated that the ginkgolic acids (GAs) and the bioflavones isolated from GBLE displayed relatively strong SARS-CoV-2 3CLpro inhibition activities (IC50 < 10 µM). Among all tested constituents, GA C15:0, GA C17:1 and sciadopitysin displayed potent 3CLpro inhibition activities, with IC50 values of less than 2 µM. Further inhibition kinetic studies and docking simulations clearly demonstrated that two GAs and sciadopitysin strongly inhibit SARS-CoV-2 3CLprovia a reversible and mixed inhibition manner. Collectively, this study found that both GBLE and the major constituents in this herbal product exhibit strong SARS-CoV-2 3CLpro inhibition activities, which offer several promising leading compounds for developing novel anti-COVID-19 medications via targeting on 3CLpro.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Coronavirus Protease Inhibitors/pharmacology , Ginkgo biloba/chemistry , Plant Extracts/pharmacology , SARS-CoV-2/drug effects , Virus Replication/drug effects , Antiviral Agents/therapeutic use , Biflavonoids/pharmacology , Biflavonoids/therapeutic use , Coronavirus Protease Inhibitors/therapeutic use , Flavones/pharmacology , Flavones/therapeutic use , Humans , Molecular Structure , Phytotherapy , Plant Extracts/therapeutic use , Plant Leaves/chemistry , SARS-CoV-2/enzymology , Salicylates/pharmacology , Salicylates/therapeutic use
9.
Chin J Nat Med ; 19(4): 305-320, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1193536

ABSTRACT

Qing-Fei-Pai-Du decoction (QFPDD) is a Chinese medicine compound formula recommended for combating corona virus disease 2019 (COVID-19) by National Health Commission of the People's Republic of China. The latest clinical study showed that early treatment with QFPDD was associated with favorable outcomes for patient recovery, viral shedding, hospital stay, and course of the disease. However, the effective constituents of QFPDD remain unclear. In this study, an UHPLC-Q-Orbitrap HRMS based method was developed to identify the chemical constituents in QFPDD and the absorbed prototypes as well as the metabolites in mice serum and tissues following oral administration of QFPDD. A total of 405 chemicals, including 40 kinds of alkaloids, 162 kinds of flavonoids, 44 kinds of organic acids, 71 kinds of triterpene saponins and 88 kinds of other compounds in the water extract of QFPDD were tentatively identified via comparison with the retention times and MS/MS spectra of the standards or refereed by literature. With the help of the standards and in vitro metabolites, 195 chemical components (including 104 prototypes and 91 metabolites) were identified in mice serum after oral administration of QFPDD. In addition, 165, 177, 112, 120, 44, 53 constituents were identified in the lung, liver, heart, kidney, brain, and spleen of QFPDD-treated mice, respectively. These findings provided key information and guidance for further investigation on the pharmacologically active substances and clinical applications of QFPDD.


Subject(s)
Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacokinetics , Administration, Oral , Alkaloids/analysis , Animals , COVID-19 , Chromatography, High Pressure Liquid , Flavonoids/analysis , Mice , SARS-CoV-2 , Saponins/analysis , Triterpenes/analysis
10.
Food Chem Toxicol ; 149: 111998, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1139497

ABSTRACT

Corona Virus Disease 2019 (COVID-19) has spread all over the world and brings significantly negative effects on human health. To fight against COVID-19 in a more efficient way, drug-drug or drug-herb combinations are frequently used in clinical settings. The concomitant use of multiple medications may trigger clinically relevant drug/herb-drug interactions. This study aims to assay the inhibitory potentials of Qingfei Paidu decoction (QPD, a Chinese medicine compound formula recommended for combating COVID-19 in China) against human drug-metabolizing enzymes and to assess the pharmacokinetic interactions in vivo. The results demonstrated that QPD dose-dependently inhibited CYPs1A, 2A6, 2C8, 2C9, 2C19, 2D6 and 2E1 but inhibited CYP3A in a time- and NADPH-dependent manner. In vivo test showed that QPD prolonged the half-life of lopinavir (a CYP3A substrate-drug) by 1.40-fold and increased the AUC of lopinavir by 2.04-fold, when QPD (6 g/kg) was co-administrated with lopinavir (160 mg/kg) to rats. Further investigation revealed that Fructus Aurantii Immaturus (Zhishi) in QPD caused significant loss of CYP3A activity in NADPH-generating system. Collectively, our findings revealed that QPD potently inactivated CYP3A and significantly modulated the pharmacokinetics of CYP3A substrate-drugs, which would be very helpful for the patients and clinicians to avoid potential drug-interaction risks in COVID-19 treatment.


Subject(s)
COVID-19 Drug Treatment , Cytochrome P-450 CYP3A/metabolism , Drugs, Chinese Herbal/pharmacology , Herb-Drug Interactions , Animals , Area Under Curve , China , Drugs, Chinese Herbal/therapeutic use , Lopinavir/pharmacokinetics , Male , Microsomes, Liver , NADP/metabolism , Phytotherapy , Rats, Sprague-Dawley , SARS-CoV-2
11.
Zhongguo Zhong Yao Za Zhi ; 45(15): 3726-3739, 2020 Aug.
Article in Chinese | MEDLINE | ID: covidwho-745644

ABSTRACT

This study is to explore the effect of Qingfei Paidu Decoction(QPD) on the host metabolism and gut microbiome of rats with metabolomics and 16 S rDNA sequencing. Based on 16 S rDNA sequencing of gut microbiome and metabolomics(GC-MS and LC-MS/MS), we systematically studied the serum metabolites profile and gut microbiota composition of rats treated with QPD for continued 5 days by oral gavage. A total of 23 and 43 differential metabolites were identified based on QPD with GC-MS and LC-MS/MS, respectively. The involved metabolic pathways of these differential metabolites included glycerophospholipid metabolism, linoleic acid metabolism, TCA cycle and pyruvate metabolism. Meanwhile, we found that QPD significantly regulated the composition of gut microbiota in rats, such as enriched Romboutsia, Turicibacter, and Clostridium_sensu_stricto_1, and decreased norank_f_Lachnospiraceae. Our current study indicated that short-term intervention of QPD could significantly regulate the host metabolism and gut microbiota composition of rats dose-dependently, suggesting that the clinical efficacy of QPD may be related with the regulation on host metabolism and gut microbiome.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Gastrointestinal Microbiome/drug effects , Animals , Bacteria/classification , Chromatography, Liquid , Metabolomics , Rats , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL